지도학습(Supervised learning)
- data x , label y
- k-Neareast Neighbors
- Linear Regression
- Support Vector Machines
- Decision Tree
- Random Forests
- Neural Networks
- Classification, Object Detection, Segmentation, Captioning(DL)
비지도학습(UnSupervised learning)
- only data x
- Clustering (K-Means, Hierachical Cluster Analysis, Expectation Maximization)
- dimensionality reduction(Principal Component Analysis, kernel PCA, LLE, t-SNE)
- Associaiton rule Learning(Apriori, Eclat)
- Feature Learning, Density estimation, Generative Model(DL)
'Study > Data Science' 카테고리의 다른 글
Confusion Matrix 혼동 행렬 (0) | 2018.08.03 |
---|---|
RMSE, MAE (0) | 2018.08.03 |
python을 이용한 Wine Quality dataset Naive Bayesain GaussianNB & BernoulliNB (0) | 2018.07.02 |
python을 이용한 Wine Quality dataset KNN (0) | 2018.06.18 |
python을 이용한 Wine Quality dataset Decision Tree (0) | 2018.06.05 |