Study/Data Science
Supervised learning, UnSupervised learning Models
MJ_DL
2018. 8. 3. 16:02
지도학습(Supervised learning)
- data x , label y
- k-Neareast Neighbors
- Linear Regression
- Support Vector Machines
- Decision Tree
- Random Forests
- Neural Networks
- Classification, Object Detection, Segmentation, Captioning(DL)
비지도학습(UnSupervised learning)
- only data x
- Clustering (K-Means, Hierachical Cluster Analysis, Expectation Maximization)
- dimensionality reduction(Principal Component Analysis, kernel PCA, LLE, t-SNE)
- Associaiton rule Learning(Apriori, Eclat)
- Feature Learning, Density estimation, Generative Model(DL)